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Abstract. By using the known relation between the Holt system and the Hénon–Heiles system,
the Lax pairs for all the integrable cases of the Holt system are constructed from the known Lax
representations for the Hénon–Heiles system.

1. Introduction

The Holt system is defined by the Hamilton function

H̃ = 1

2
(p2

X + p2
Y ) + aX−2/3

(
3b

4
X2 + Y 2 + c

)
. (1.1)

Only three integrable cases are known [1,2]

(i) b = 1 (ii ) b = 6 (iii ) b = 16 (1.2)

while the remaining parametersa andc are arbitrary constants. These parameters were isolated
by the singular analysis [2], although the second integrals may be obtained directly [1,3].

By integrability we mean the existence of a second independent integral of motionK, and
in this case the Liouville theorem implies that the problem can be solved by quadratures. This,
however, can be done only after finding special new variables which separate the associated
Hamilton–Jacobi equation. Recall that for the Holt system the additional second integrals
K are the polynomials of the third-, fourth- and sixth-order in momenta [1, 3], respectively.
Therefore, it seems that the Hamiltonians (1.1) cannot be separable in the standard curvilinear
coordinate systems. But atb = 1, 6 the Holt system belongs to the family of the Stäckel systems
and the separation variables are related to the usual curvilinear coordinates. According to [4], at
b = 1, 6 the second additional integral of motionK may be reduced to a quadratic polynomial
in momenta{px, py}, which is related to the separability of the Hamilton–Jacobi equation in
rotated Cartesian coordinates for (i) and in parabolic coordinates for (ii).

In fact, rescaling constantsa andc in (1.1)

a→ 4

(
3

2

)1/3

a c→ c

3a

and performing the canonical change of variables first proposed in [5]

X = 2
3x

3/2 pX = px
√
x

Y = − 1

2
√

3a
py pY = 2

√
3ay
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the Hamilton function (1.1) becomes

H̃ = p2
x + p2

y

2x
+ 2a(bx2 + 3y2) +

2c

x
. (1.3)

According to [4], the time variablet and integrals of motion for the Holt system may be
transformed by the rule

dt̃ = x dt H̃ 7→ H = xH̃
K̃ 7→ K = K̃ − y

n

3
H̃ n = [

√
b] = 1, 2, 4

(1.4)

into the integrals of motion for the H́enon–Heiles system

H = p2
x + p2

y

2
+ 2ax(bx2 + 3y2) + 2c = T + V. (1.5)

Here atb = 1, 6 the ratio of the HamiltoniansH andH̃ is equal to the ratio of the determinants
of the associated Stäckel matrices [4]. This duality may be considered as the coupling-constant
metamorphosis between integrable systems [6] with respect to the constantc in the potentialV .

The purpose of this paper is to show how the canonical transformation of the extended
phase space (1.4) acts on the Lax matricesL(λ) andA(λ) in the Lax equation

dL(λ)

dt
= {H,L(λ)} = [A(λ), L(λ)] (1.6)

and acts on the corresponding spectral curve

C(z, λ) det(zI +L(λ)) = 0. (1.7)

The Lax representations for all the integrable cases of the Hénon–Heiles system were
constructed in [8] by using the connection with stationary flows of some known integrable
partial differential equations (PDEs). We shall use these Lax pairs to discuss the Lax
representations for the Holt systems by exploiting transformation (1.4).

At b = 6 canonical transformation of the time (1.4) may be associated to the ambiguity
of the Abel map on the corresponding hyperelliptic curve (1.7) [4]. The corresponding
transformation of the Lax matrices and of the characteristic curve was considered in [4].

Below we shall consider two remaining cases atb = 1 andb = 16. Although the
corresponding spectral curves are trigonal algebraic curves, transformations of the Lax matrices
are similar to the transformations in the Kepler problem and in the caseb = 6 [4].

In [7] the separability and another Lax pair for the Hénon–Heiles system have been
considered. We shall use these results to construct a non-canonical transformation of the
Hamiltonian (1.1) into the Stäckel form atb = 16 (iii) .

2. Results

Case (i). Let us begin with the Lax pair for the Hénon–Heiles system atb = 1 [8,9]:

L(λ) =

 6xλ −γ (3x2 + y2) 3
2γ (3λ

2 − px)
3

2γ (3λ
2 + px) −3xλ− pyy

λ

y2

λ

−γ (3x2 + y2) 9λ3− y2

λ
−3xλ + pyy

λ


and

A(λ) =
( 0 2γ λ 0

0 0 1
2γ λ −4γ 2x 0

)
where γ =

√
3a.
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The corresponding spectral curve (1.7)

C : −12az3 = 729λ7− 162Hλ3 + 324cλ3 +
9K2

λ
(2.1)

is a third-order cyclic covering of the line. Note that it is a very particular case in the class of
generic trigonal algebraic curves.

Now we turn to the Holt system. As for the uniform Stäckel system [4], change of the
time (1.4) induces the following transformations of the Lax matrices:

L̃(λ) = L(λ) +
3

2γ
H

( 0 1 0
0 0 0
1 0 0

)
Ã(λ) = 1

x
A(λ).

The spectral curve of this matrixL(λ) takes the following trigonal form:

C̃ : −12az3 + 54H̃ zλ2 = 729λ7 + 324cλ3 +
9K̃2

λ
.

HereK and K̃ are the second independent integrals of motion, which are second-order
polynomials in momenta.

After the following point transformation:

x = 1
2(u + v) y = 1

2(u− v) (2.2)

the integrals of motion for the H́enon–Heiles system are equal to

H = p2
u + p2

v + a(u3 + v3) + 2c
K = p2

u − p2
v + a(u3− v3).

(2.3)

The same change of the variables for the Holt systems leads to

H̃ = 2
p2
u + p2

v + a(u3 + v3) + 2c

u + v

K̃ = 2
v(p2

u + au3 + c)− u(p2
v + av3 + c)

u + v
.

(2.4)

For both systemsu, v are separation variables and these systems belong to the Stäckel set of
integrable systems [4].

In these separation variables, the Hénon–Heiles dynamics splits on two tori. According
to [11], we can construct another 2× 2 Lax representation for the Hénon–Heiles system with
hyperelliptic spectral curve. Change of the time (1.4) induces transformation of the algebraic
curvesC → C̃, which rearranges moduliH andH̃ and preserves the genus of the corresponding
spectral curves. Therefore, by using a slightly different covering of the two tori the 2× 2 Lax
representation for the Holt system atb = 1 may be constructed as well.

Case (iii). Atb = 16 the Lax matrices for the H́enon–Heiles system [8,9] are

L(λ) =

 12x − pyy

2λ
y2

4λ
3
8a

9λ + 3px + 6axy2

λ
− p2

y

2λ −6x y2

4λ

−24a
(

24x2+y2

2 − xypy
λ

)
9λ− 3px − 6axy2

λ
− p2

y

2λ −6x + pyy

2λ


and

A(λ) =
( 0 1 0

0 0 1
24a(λ− px) −48ax 0

)
.
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As above, the spectral curve of the Lax matrix

C : −8az3 = 243λ2 − 54H + 108c +
3K2

λ2

is a third-order cyclic covering of the line.
Canonical change of the time (1.5) is closed to the Kepler transformation [4]. Hence,

transformation of the Lax matrices and of the algebraic curves have a similar form:

L̃(λ) = L(λ) + 3H

( 0 0 0
0 0 0
1 0 0

)
Ã(λ) = 1

x
A(λ) (2.5)

and

C̃ : −8az3 + 9H̃ z = 243λ2 + 108c +
3K̃2

λ2
.

Here the second integrals of motioñK andK are the non-factorable polynomial of the fourth
order in momenta

K = p4
y

4
− 2y6a2 + 6axy2py

2 − 2apyy
3px − 12x2y4a2 (2.6)

and

K̃ = p4
y

4
+

1

4

ay2(y2 + 24x2)py
2

x
− 2apyy

3px +
1

4

y4a(4axy2 + px2 + 16ax3 + 4c)

x
. (2.7)

According to [7, 10], let us introduce the Stäckel integrals of motion for the H́enon–Heiles
system

H = p2
u − 2au3 + p2

v − 2av3 + 2c
K = p2

u − 2au3− p2
v + 2av3 (2.8)

and for the Holt system

H̃ = −4
pu

2 − 2au3 + pv2 − 2av3 + 2c

u + v

K̃ = 2
v(pu

2 − 2au3 + c)− u(pv2 − 2av3 + c)

u + v
.

(2.9)

These integrals coincide with integrals (2.3), (2.4) up to the constant factors. Let us introduce
the quasi-point transformation of variables [7,10]

u = 1

2

C

y2a
+

1

4

py
2

y2a
+ x, pu = 1

2
px +

1

2

py

y

(
−1

2

py
2

y2a
− 6x − C

y2a

)
v = −1

2

C

y2a
+

1

4

py
2

y2a
+ x pv = 1

2
px +

1

2

py

y

(
−1

2

py
2

y2a
− 6x +

C

y2a

)
.

(2.10)

Here constant of motionC is unspecified function of the new variables(x, px, y, py).
According to [12] we have to substitute the separation variables (2.10) into the definition of

the second integralsK (2.8) and solve the resulting second-order equationC = K. Substituting
the solution into (2.10) we get a change of variables, which transforms the Stäckel integrals
(2.8) into the H́enon–Heiles integrals (1.5), (2.6) atb = 16. Moreover, this transformation is
a canonical transformation of the variables [12].

For the Holt system we can also substitute new variables (2.10) into the definition of the
corresponding second integralsK̃ (2.9) and solve the resulting second-order equationC = K̃.
Substituting the solution into (2.10) one gets change of variables, which transforms the Stäckel
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integrals (2.9) into the Holt integrals (1.3), (2.7) atb = 16. In contrast to the H́enon–Heiles
case, this change of variables is a non-canonical transformation.

So, atb = 16 we have a non-canonical change of variables

(t, x, y, px, py)→ (t̃ , u, v, pu, pv)

which transforms integrals of motion for the Holt system into the Stäckel form. Of course,
such transformations are known. As an example, the complete Kolosoff transformation [13]
connects the Stäckel system with the Kowalewski top, which is an integrable but non-Stäckel
system. By using such transformations we can construct the separated equations in the
Lagrangian variables(u, u̇, v, v̇)and get solutions of the equations of motion in theta-functions.
Up until now, in the quantum mechanics we have not been able to construct a counterpart of
this transformation for the Holt system.
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